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abstract

This text gives an introduction to symplectic geometry, proceeding to
moment maps and symplectic reduction, which is illustrated with ex-
amples. The notions of Lagrangian and special Lagrangian subspaces
and submanifolds are introduced and discussed. An example for a spe-
cial Lagrangian fibration is given.

introduction

In this text some of the technical prerequisites for approaching the topic
of mirror symmetry are presented. In [10, §11] mirror symmetry is briefly
described as “a mysterious relationship between pairs of Calabi-Yau 3-folds
[. . . ] arising from a branch of physics known as String Theory, and leading to
some very strange and exciting conjectures about Calabi-Yau 3-folds [. . . ]”
– and thus is beyond the scope of this dissertation. A sound knowledge of
manifolds along with some knowledge of Lie groups and linear algebra should
suffice to understand this text.

The first topic treated is symplectic geometry which is a huge topic in its
own right. The theory is developed to facilitate the understanding of moment
maps and symplectic reduction. Intriguing topics such as ‘nonsqueezing’
properties [14, §§2.4, 12.1] or the question of the existence of symplectic
structures have been left out and most paragraphs in the text could be
extended to whole sections with further facts and examples.

Examples are given from the definition of a symplectic manifold and
developed all the way to the process of symplectic reduction. The exam-
ples from classical mechanics are basic – owing to the author’s ignorance of
physics.

∗supervised by David Mond at the Mathematics Institute, University of Warwick
†sven@porst.net



mailto:mond@maths.warwick.ac.uk
http://www.maths.warwick.ac.uk
http://www.warwick.ac.uk
mailto:sven@porst.net


For symplectic geometry Berndt’s book [2] is useful introductory reading
and often a subset of Abraham and Marsden’s detailed and comprehensive
book on mechanics [1] which is rightly shelved along with the mathematics
books in the library. An even broader view with less computations is given in
[14]. Originally, symplectic reduction, which is described in all of the books
mentioned, was introduced by Marsden and Weinstein in [13].

Harvey and Lawson’s paper on calibrated geometries [9] was the founda-
tional work on that topic and gives a good introduction to Lagrangian and
special Lagrangian subspaces and submanifolds. Using this and the setting
of almost Calabi-Yau manifolds, a few facts from Gross [7] and Goldstein
[5] are established and illustrated by an example for a special Lagrangian
fibration.

The next step would be to further investigate special Lagrangian fibra-
tions, allow them to have singularities and study these singularities and their
behaviour – using techniques from both algebraic and differential geometry
– see [7] or [10, §10]. Eventually, it is hoped that this helps in understanding
mirror symmetry, the SYZ-conjecture and their relation to string theory in
physics – see [10, §11].

As there are still many open questions in this area of mathematics, it
will be an interesting an exciting field for further study.

 symplectic vector spaces

definition To begin with, we need to familiarise ourselves with the no-
tion of a symplectic vector space and the basic properties of such spaces:
A symplectic vector space is a pair (V, ω), where V is a finite dimensional
R-vector space and ω : V × V → R is a (linear) symplectic form, i.e. a
skew-symmetric non-degenerate bilinear form.

We can think of ω as an element of Λ2V ∗. Furthermore, by non-degeneracy,
ω gives rise to an isomorphism ω[ : V → V ∗ given by v 7→ ιvω, i.e. by the
contraction of ω with v. In fact ω[ being an isomorphism is equivalent to
non-degeneracy of ω, as is – in the case of 2n-dimensional spaces – the
condition that ωn is non-zero.

subspaces Given a symplectic vector space (V, ω) and a subspace W ⊂ V ,
we can define the ω-orthogonal complement of W in V :

Wω = {v ∈ V | ∀w ∈W : ω(v, w) = 0}.

Using this definition twice we see that Wωω = W and using ω[ to identify
Wω with those elements of V ∗ annihilating all of W , we get the dimension
formula dimWω + dimW = dimV .

However, the intersection of W and Wω does not need to be trivial. If it
is, W is called a symplectic subspace and the restriction of ω to W is non-
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degenerate . Using that Wωω = W , it is immediate that if W is a symplectic
subspace, so is Wω.

There are special names for the other cases as well: W is called isotropic
if W ⊂ Wω, coisotropic if Wω ⊂ W and Lagrangian if it is both isotropic
and coisotropic, i.e. if W = Wω. By the dimension formula we see that
Lagrangian subspaces must be of dimension dimV/2.

basis The first fact we arrive at is that for any symplectic vector space
(V, ω) we can find a basis {q1, p1, . . . , qn, pn} such that ω(qj , pk) = δjk and
ω(qj , qk) = ω(pj , pk) = 0 for 1 ≤ j, k ≤ n. A basis with these properties is
called a symplectic basis.

To prove this, choose a non-zero vector q1. Then, by non-degeneracy of ω,
there is a vector p1 such that ω(q1, p1) = 1. Let V1 be the subspace spanned
by those two vectors. Then V1 is a symplectic subspace and thus, by the
results of the previous paragraph, we have V = V1 ⊕ V ω

1 . As V ω
1 is again

symplectic, we can proceed inductively until we have the desired basis.
By this construction a symplectic basis has an even number of elements

and thus all symplectic vector spaces are of even dimension. Symplectic
bases are the symplectic analogue to the orthonormal bases we construct for
inner product spaces by the Gram-Schmidt process.

example Now we are in a position to comfortably construct an example:
Let V = R2n and {q1, p1, . . . , qn, pn} a basis of V . Then, with

v =
n∑

j=1

(ajqj + bjpj) and v′ =
n∑

j=1

(a′jqj + b′jpj),

define ω(v, v′) =
∑n

j=1(ajb
′
j − a′jbj). This makes (V, ω) a symplectic vector

space and {q1, p1, . . . , qn, pn} a symplectic basis. The symplectic form ω we
defined is called the standard symplectic form for R2n.

For a more concrete example, consider C2 as a R-vector space with
elements (z1, z2) where zj = xj + iyj . Then

ω((z1, z2), (z′1, z
′
2)) = x1y

′
1 + x2y

′
2 − x′1y1 − x′2y2

makes (V, ω) a symplectic vector space and {(1, 0), (i, 0), (0, 1), (0, i)} is a
symplectic basis. Furthermore, we can look at different subspaces and their
ω-orthogonal complements and check whether they have any of the proper-
ties defined in the paragraph on subspaces:

W Wω W ∩Wω property
R× 0 R×C R× 0 isotropic
C× 0 0×C 0 symplectic
R×R R×R R×R Lagrangian
R× iR R× iR R× iR Lagrangian
C×R 0×R 0×R coisotropic
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morphisms Given symplectic vector spaces (V, ω) and (V ′, ω′), we consider
linear maps L : V → V ′ preserving the symplectic form, i.e. such that
L∗ω′ = ω, meaning that ω′(Lv, Lw) = ω(v, w) for all v, w ∈ V . Since L
preserves the nondegenerate form ω, it has to be an isomorphism. Such linear
maps are called (linear) symplectomorphisms. The symplectomorphisms of
(V, ω) to itself form the symplectic (linear) group for (V, ω): Sp(V, ω).

classification It turns out that any 2n-dimensional symplectic vector
space (V, ω′) is symplectomorphic to (R2n, ω) where ω is the standard sym-
plectic form: Let {q1, p1, . . . qn, pn} and {q′1, p′1, . . . , q′n, p′n} be symplectic
bases for V and R2n respectively, then

L : V → R2n qj 7→ q′j pj 7→ p′j

satisfies L∗ω = ω′ and thus is a symplectomorphism as desired. Due to the
fact we have just proved there is no need for further examples of symplectic
vector spaces. Also, all the symplectic groups are isomorphic to Sp(R2n, ω)
by conjugation and we write Sp(n) as as shorthand.

complex structures It is interesting to see how symplectic forms ω
relate to complex structures J , inner products g and hermitian forms h,
i.e. automorphisms with the property J2 = −id, non-degenerate positive-
definite symmetric bilinear forms and non-degenerate positive-definite com-
plex-conjugate-skew-symmetric C-bilinear forms respectively.

This can be approached in different ways, most of which involve choosing
canonical bases for the respective structures and manipulating matrices to
see how they are related and what they look like when the structures involved
exist and are compatible. See, for example, [3, §2] for the computations
leading to the relations

g(v, w) = ω(v, Jw) and h(v, w) = g(v, w) + iω(v, w) (a)

the latter of which requires us to identify R2n with Cn as needed. Looking
at these relations in terms of the structure-preserving groups involved, we
have

structure ω g J h

group Sp(n) O(2n) Gl(n,C) U(n)
.

As the h can be recovered from any two of ω, g, J and vice versa, this gives
the following fact on the structure-preserving groups:

Sp(n) ∩Gl(n,C) = Sp(n) ∩O(2n) = O(2n) ∩Gl(n,C) = U(n).
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 symplectic manifolds

definition Now we transfer the notion of a symplectic form on a vector
space to manifolds. Let M be a (smooth) manifold, then a symplectic struc-
ture on M is a closed non-degenerate 2-form ω ∈ Ω2(M). Thus, at any point
m ∈ M , the tangent space is a symplectic vector space (TmM,ωm). A pair
(M,ω) is called a symplectic manifold.

This definition is similar to that of a Riemannian manifold, where our
additional structure, the Riemannian metric, is a smooth section of non-
degenerate elements of the bundle S2M , thus making the tangent space at
any point an inner product space. However, the definition of a symplectic
structure is more restrictive as it does not only consist of the algebraic
condition that the form be non-degenerate on each tangent space but also
adds the analytic condition dω = 0.

Given two symplectic manifolds (M,ω) and (M ′, ω′) and a smooth map
f : M →M ′ then this map is called a symplectomorphism if it preserves the
symplectic structure, i.e. if ω = f∗ω′. That is, if

ωm(v, w) = ω′f(m)(dmf(v), dmf(w)) for all m ∈M and v, w ∈ TmM.

The set of all symplectomorphisms from a symplectic manifold (M,ω) to
itself is denoted Sp(M,ω).

facts There are a few facts about symplectic manifolds which are worth
mentioning and easy to establish. Firstly, symplectic manifolds have to be
of even dimension, as their tangent spaces are symplectic vector spaces and
thus of even dimension. Secondly, as ω is closed it represents a (de Rham)
cohomology class [ω] ∈ H2(M).

Thirdly, with M being 2n-dimensional and ωp being non-degenerate for
each m ∈M , we know from section  that each ωn

m is non-zero and thus ωn is
a non-vanishing 2n-form representing an orientation: Symplectic manifolds
are orientable. As ωn is (the multiple of) a volume form, this implies that
symplectomorphisms are volume preserving. Furthermore, for compact M ,∫
M ωn 6= 0, implying

∫
M ω 6= 0 and by Stokes’ theorem it follows that ω

cannot be exact, i.e. [ω] is non-zero in cohomology.

examples The first example we can come up with is the space R2n with
linear coordinates {q1, p1, . . . , qn, pn} and the standard symplectic structure
ω =

∑n
j=1 dqj ∧ dpj = dq ∧ dp. Linear coordinates on R2n give a basis{(

∂

∂q1

)
m

,

(
∂

∂p1

)
m

, . . . ,

(
∂

∂qn

)
m

,

(
∂

∂pn

)
m

}
for each TmM that is a symplectic basis with respect to ωm. Charts with
this property are called symplectic charts.
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From the facts established in the previous paragraph, we quickly discover
two manifolds that cannot carry a symplectic structure: Firstly the Möbius
strip, which is non-orientable. Secondly, spheres Sn with n 6= 2 are compact
and have H2(Sn) = 0 – hence do not allow for a symplectic structure with
[ω] 6= 0.

For S2, however, we can find a symplectic structure as every representa-
tive for non-zero elements of H2(S2) is closed and non-degenerate. As this
is quite a nice example, we will also take a look at the concrete symplectic
structure: Think of S2 as the set of unit vectors in R3. Then, for a m ∈ S2,
the tangent space at that point is the orthogonal complement (with respect
to the standard inner product g) of the subspace spanned by m ∈ S2 ⊂ R3

and we can define ωm(v, w) = g(m, v × w). This form is closed since S2 is
two-dimensional and it is also non-degenerate as for v 6= 0 we always have
ωm(v,m× v) = g(m, v × (m× v)) = det(m, v,m× v) 6= 0.

Apart from S2 = CP1, all CPn can be given a symplectic structure.
Rather than showing this directly, the treatment of CPn will be postponed
until section , where we will be able to show that it is a symplectic manifold
using symplectic reduction. Another very important class of examples is the
following:

cotangent bundles Let Q be a (smooth) n-dimensional manifold, then
its cotangent bundle T ∗Q

π→ Q is a 2n-dimensional manifold which locally
has coordinates (q, p) = (q1, . . . , qn, p1, . . . pn) where q ∈ Q and p ∈ (TqQ)∗.
Now consider the bundle projection map π and its derivative:

π : T ∗Q −→ Q (q, p) 7−→ q dπ =
∂π

∂q
dq +

∂π

∂p
dp = dq.

Using this at a point (q, p), we can define a 1-form ϑ by ϑ(q,p) = p ◦ d(q,p)π:

ϑ : T(q,p)T
∗Q

d(q,p)π−→ TqQ
p−→ R,

This form is defined independent of choice of coordinates and it is known
as the canonical 1-form. We can, however work out ϑ in the coordinates
given above. To do this we need to remember three facts: (i) p ∈ T ∗Q
can be written as p =

∑n
j=1 pjdqj , (ii) v ∈ TT ∗Q can be written as v =∑n

k=1(vk∂/∂qk+vn+k∂/∂pk) and (iii) d(q,p)π is zero on tangent vectors ∂/∂pj

that go along fibres and maps tangent vectors ∂/∂qj to themselves. Putting
these together gives

ϑ(q,p)(v) = p ◦ d(q,p)π

 n∑
j=1

vk
∂

∂qk
+ vn+k

∂

∂pk


=

n∑
j,k=1

pjdqj

(
vk

∂

∂qk

)
=

n∑
j=1

pjvj = pv.
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Thus ϑ =
∑n

j=1 pjdqj = pdq in local coordinates. We note that this way of
writing ϑ is a fancy way of doing hardly anything. By differentiating −ϑ, we
get the canonical 2-form

ω = −dϑ = −
n∑

j,k=1

∂pj

∂pk
dpk ∧ dqj =

n∑
j=1

dqj ∧ dpj = dq ∧ dp.

It is immediate that ω is a symplectic structure for T ∗Q as we have already
managed to exhibit symplectic charts for it.

Another theorem on cotangent bundles says that given a diffeomorphism
f : Q→ R, its lift T ∗f : T ∗R→ T ∗Q will actually be a symplectomorphism
[1, Theorem 3.2.12]. and it turns out that T ∗ is a functor from the category of
smooth manifolds and diffeomorphisms to the category of symplectic mani-
folds and symplectomorphisms.

physics Cotangent bundles arise frequently in physics, particularly in clas-
sical mechanics. If we have a mechanical system, it has a configuration space
Q associated to it, containing all the possible constellations the system can
take in space. This is fine for describing the spatial state of the system at
one moment in time. However, physicists are also interested in describing
future states of the system. To do this they need to consider the velocity or
the momentum of the system as well.

This gives rise to the phase spaces TQ and T ∗Q respectively. TM is also
called velocity phase space as an element (q, p) ∈ TQ gives the position p and
a tangent vector p at that position encoding the velocity. T ∗M is also known
as momentum phase space as (q, p) ∈ T ∗Q gives with p a map that answers
to every direction with a number. In the following we shall be dealing with
momentum phase spaces only.

We can give several examples for this: Consider the harmonic oscillator.
Its possible positions are expressed by a real line. Thus its momentum phase
space is T ∗R = R2. Similarly, if we have a particle that can move freely
in 3-space, its configuration space is R3 and the momentum phase space
is T ∗R3 = R6. Another example is given by a pendulum – its position
in space can be described by an angle α ∈ [0, 2π], thus its configuration
space is S1 and its phase space is T ∗S1 = S1 ×R. Similarly the state of a
double pendulumcan be described by two angles α, β ∈ [0, 2π] and thus the
configuration space is T 2 with phase space T ∗T 2 = T 2 ×R2.

We shall see some of these examples along with more notes on the relation
of physics with symplectic geometry again in section .

vector fields Let (M,ω) be a symplectic manifold and V (M) the space
of vector fields on M , i.e. smooth sections of TM . Given a vector field, we
can now use ω to get a 1-form by the map

ω[ : V (M) −→ Ω1(M) X 7−→ ιXω.
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This map is linear and as ω is non-degenerate it is an isomorphism with
inverse ω]. We shall write X[ and η] instead of ω[(X) and ω](η) where no
ambiguities concerning the symplectic structure in question can arise.

Given symplectic charts with local coordinates (q, p) it is useful to take
η ∈ Ω(M) and compute η] explicitly. Given η =

∑n
j=1(ajdqj + bjdpj), we

want to compute the coefficients of η] =
∑n

j=1(a
′
j∂/∂qj +b′j∂/∂pj) as defined

implicitly by ιη]ω = η:

ιη]ω =
n∑

j,k=1

dqj ∧ dpj

(
a′k

∂

∂qk
+ b′k

∂

∂pk

)

=
n∑

j,k=1

dqj

(
a′k

∂

∂qk
+ b′k

∂

∂pk

)
dpj − dpj

(
ak

∂

∂qk
+ bk

∂

∂pk

)
dqj

=
n∑

j=1

(a′jdpj − b′jdqj) =
n∑

j=1

(ajdqj + bjdpj) = η

Thus we get

η] =
n∑

j=1

(bjdqj − ajdqj) (b)

Given a vector field X, we locally have a flow Ft associated to it and
we remind ourselves of the Lie derivative LXY = d/dt(Ft∗Y )|t=0

of a vector
field Y along the vector field X. This allows us to define the Lie bracket
[X,Y ] = LXY that makes (V (M), [·, ·]) a Lie algebra.

We can define the Lie derivative on forms using the pullback instead of
the pushforward of the flow Ft: LXη = d/dt(F ∗

t η)|t=0
for η ∈ Ωj(M). For

this case the relation
LXη = ιXdη + dιXη (c)

as proved in [11, Proposition I.3.10] will be useful later. On functions F ∈
C∞(M) the Lie derivative along X is defined as LXf = df(X). The latter
is a derivation thus justifying the word ‘derivative’ in its name. Finally note
that a function F ∈ C∞(M) gives rise to a vector field XF = (dF )].

darboux’s theorem The classification of symplectic manifolds is not as
simple as the classification of symplectic vector spaces. However it is still
possible to show that locally all symplectic manifolds of the same dimension
are diffeomorphic. This is known as Darboux’s theorem. The proof given
below follows that of Moser and Weinstein that is given in many places in
the literature such as [1, Theorem 3.2.2] or [8, 22.1]. It is remarked in [4,
2.1.4] that other proofs are possible and one of them is given there.

We start with a symplectic manifold (M,ω) and a point m ∈ M for a
neighbourhood of which we want to prove the theorem. First we note that
by means of a chart ϕ, M is locally diffeomorphic to a vector space V with
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linear coordinates and we can arrange for ϕ(m) = 0. Thus we will just
consider V and forms on V for the rest of this proof. With ω′p = ω0 for all
p ∈ V , we can define the interpolation

[0, 1] −→ Ω2(V ) t 7−→ ωt = (1− t)ω + tω′

We know that for all t ∈ [0, 1] ωt
0 = ω′ and thus all ωt

0 are non-degenerate.
As non-degeneracy is an open property, we can find an open ball B around
0 on all of which all of the ωt are non-degenerate. As ω′ and ω are closed,
so is ω′ − ω and the Poincaré-Lemma now guarantees the existence of an
η ∈ Ω1(B) such that ω′ − ω = dη. Since η is only determined up to a closed
1-form, it can be chosen such that η0 = 0.

Next we use the non-degeneracy of the ωt to define a vector field Xt =
ωt](−η) which in turn, on a sufficiently small neighbourhood, gives rise to
a flow Ft, with F0 = id. These flows can be associated to the Lie derivative
L·· giving

d
dt(F

∗
t ω

t) = d
dt(F

∗
t )ωt + F ∗

t
d
dtω

t product rule
= F ∗

t (LXtω
t) + F ∗

t (ω′ − ω) relation with L··, compute
= F ∗

t (ιXtdω
t + dιXtω

t + ω′ − ω) by equation (c)
= F ∗

t (−dη + ω′ − ω) ω closed, definition of Xt

= F ∗
t (−ω′ + ω + ω′ − ω) construction of η

= 0.

Thus F ∗
t ω

t is constant and F0 = id gives F ∗
1ω

1 = F ∗
1ω

′ = ω showing that
F1 locally is a diffeomorphism that pulls back the constant form ω′ to the
symplectic structure ω of our manifold.

It is noted in [1, §3.2] that this technique can also be used to prove the
Morse lemma, as is done there or in [15, 3.9]. Although we would not expect
to meet the Morse lemma here, on second thoughts it is not as remote as
it first seems as it deals with putting a non-degenerate bilinear form (the
Hessian) into a standard form as well.

Darboux’s theorem shows that a symplectic structure is more restrictive
than a Riemannian structure. Symplectic manifolds have no local invariants
apart from their dimension, whereas Riemannian manifolds have many, such
as the different flavours of curvature. Thus the study of symplectic manifolds
is mainly a study of global properties.

 more on symplectic manifolds

complex structures A complex structure on a manifold is understood
to be an atlas of charts going into Cn with holomorphic transition functions.
Unfortunately this is not equivalent to the notion we get when we try to
generalise the definition of a complex structure on a vector space as given on
page . That generalisation will give us what is known as an almost complex
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structure, namely a section of the automorphism bundle J ∈ ΓAut(TM)
such that J2

m = −idTmM for every m ∈ M . A manifold with a (almost)
complex structure is called a (almost) complex manifold.

For our purpose it is enough to keep in mind that given a complex
manifold, its complex structure gives rise to an almost complex structure as
shown in [3, §3]. A complex manifold can also carry a hermitian structure
h which is a smooth section of the bundle of unitary automorphisms of the
tangent spaces: h ∈ Γ

⊔
m∈M U(TmM,Jm).

Later we will use standard notation for complex manifolds, including
vector fields ∂/∂z = 1/2(∂/∂x − i∂/∂y), ∂/∂z̄ = 1/2(∂/∂x + i∂/∂y), their
dual 1-forms dz, dz̄ and the operators ∂, ∂̄ as introduced, say, in [3, §3].

Let M be a complex manifold with induced almost complex structure J
and hermitian structure h, then ω = Im(h) defines (twice) the Kähler form
which is non-degenerate. If the Kähler form is closed, i.e. if (M,ω) is also a
symplectic manifold, (M,J, ω) is called a Kähler manifold.

hamiltonian vector fields and flows Consider a smooth function H
on a symplectic manifold (M,ω) and the vector field XH it implicitly defines
via the equation ιXH

ω = dH. In this case H is called a Hamiltonian function
or energy function and XH its associated Hamiltonian vector field. Different
Hamiltonian functions can give rise to the same Hamiltonian vector field.
However any two of these functions will only differ by a constant on each
connected component of M . In a symplectic chart with coordinates (q, p)
XH can be given explicitly by equation (b):

XH =
n∑

j=1

(
∂H

∂pj

∂

∂qj
− ∂H

∂qj

∂

∂pj

)
.

The triple (M,ω,XH) is called a Hamiltonian system. Hamiltonian systems
are a huge topic of their own.

Given a vector field X on (M,ω), it is said to be locally Hamiltonian
if for every point in M there is an open neighbourhood on which X is
Hamiltonian. This is equivalent to locally ιXω = dH being closed which is
in turn equivalent to LXω = ιXdω+ dιXω = 0. Thus it is also equivalent to
the local flow Ft of XH , also called the Hamiltonian flow of H, consisting
of symplectomorphisms. The proof for this runs along the same lines as the
argument and computation for the proof of Darboux’s theorem.

poisson brackets Given smooth functions F,G on a symplectic manifold
(M,ω) we define the Poisson bracket on functions using the Hamiltonian
vector fields XF and XG induced by F and G:

{F,G} = ω(XF , XG) = X[
F (XG) = (dF )][(XG) = dF (XG) (d)
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The Poisson bracket is bilinear, skew-symmetric and satisfies the Jacobi
identity – thus it makes (C∞(M), {·, ·}) a Lie algebra. By the last part of
the equation above, we can relate the Poisson bracket on functions to the Lie
derivative on functions: {F,G} = dF (XG) = LXG

F . Differentiating this ex-
pression gives X{F,G} = −[XF , XG] as shown with different sign conventions
in [14, Proposition 3.6]. We can also define the Poisson bracket on 1-forms,
to satisfy a similar relation:

{α, β}] = −[α], β]] α, β ∈ Ω1(M)

As shown in [2, §3.3, Theorems 1 and 3] the two definitions of the Poisson
brackets are related by the exterior derivative: d ◦ {·, ·} = {·, ·} ◦ (d × d).
Thus, the relations between the Poisson bracket on functions, the Poisson
bracket on forms and the Lie bracket are summarised in the commutative
diagram in figure .

C∞(M)× C∞(M)
{·,·}

//

d×d

��

C∞(M)

d

��

Ω1(M)× Ω1(M)
{·,·}

//

]×]

��

Ω1(M)

]

��

V (M)× V (M)
−[·,·]

// V (M)

figure : Relating the the Poisson bracket on functions, the Poisson bracket
on forms and the Lie bracket using d and ].

Apart from establishing these abstract properties, we can also write the
Poisson bracket in the coordinates (q, p) of a symplectic chart using equa-
tion (b):

{F,G} = dF ((dG)])

=
n∑

j,k=1

(
∂F

∂qj
dqj +

∂F

∂pj
dpj

)(
∂G

∂pk

∂

∂qk
− ∂G

∂qk

∂

∂pk

)

=
n∑

j=1

(
∂F

∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

)
(e)

Recall that for the Lie bracket [X,Y ] = 0 means that the two vector
fields X and Y ‘commute’, i.e. if running a bit along the flow of X and
then along the flow of Y we will end up at the same point as when running
along the flow Y first and that of X afterwards (see, for example [12, §V.1]).
Similarly we can interpret to {F,G} = dF (XG) = 0: it means that F is
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constant along the flow generated by G and vice versa. In particular, if we
have a Hamiltonian function H, by antisymmetry of the Poisson bracket, we
have {H,H} = 0. IfH is a function giving the energy – as the alternate name
given in the definition of Hamiltonian functions in the previous paragraph
suggests – this equation encodes the conservation of energy.

group actions We want to consider the smooth action of a Lie group G
with Lie algebra g = TeG on a symplectic manifold (M,ω). Here is some
notation which we will use whenever talking about group actions: Let Φ :
G×M →M be the group action and denote Φ(g,m) by g.m. Additionally
we define the maps

ϕg : M −→M m 7−→ g.m and ψm : G −→M g 7−→ g.m

for the action of G on M as well as

λg : G −→ G h 7−→ gh and ρg : G −→ G h 7−→ hg

for the action of G on itself. The group action Φ is called symplectic if all of
the ϕg are symplectomorphisms. A form α ∈ Ωj(M) is called G-invariant if
ϕ∗gα = α for all g ∈ G. So in particular ω is G-invariant if and only if Φ is
symplectic. Given a vector ξ ∈ g, we can define a vector field XM

ξ ∈ V (M)
associated to it using the exponential map∗:

XM
ξ : m 7−→ (ψm)∗eξ =

d

dt
ϕexp tξ(m)|t=o

XM
ξ is called the infinitesimal generator of ξ on M . If there is no ambiguity

with respect to the manifold, we shall write simply Xξ instead of XM
ξ . For

a fixed ξ ∈ g, X ·
ξ is a natural transformation from the identity functor on

the category of manifolds to T . If on the other hand we fix the manifold M ,
the map ξ 7→ Xξ is a Lie algebra homomorphism (g, [·, ·]) → (V (M), [·, ·]).
Φ is called (weakly) Hamiltonian if every Xξ is a Hamiltonian vector field,
i.e. if there is a function Hξ such that X[

ξ = dH.
Now assume Φ to be a Hamiltonian group action of an abelian group G

on M . This implies that g is commutative with respect to the bracket. Now
we can use the relation between the Lie and Poisson brackets and compute
for ξ, ζ ∈ g

(d{Hξ,Hζ})] = X{Hξ,Hζ} = −[Xξ, Xζ ] = −X[ξ,ζ] = −(dH[ξ,ζ])
].

Taking the first and the last expression and removing the ] gives

c = {Hξ,Hζ} − (−H0)
∗See [16, §2.4] for the construction of and facts on the exponential map.
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where c is constant. As H0 is constant as well, this implies that {Hξ,Hζ}
is constant. If we assume G to be compact, then so are the closures of the
integral curves generated by Xξ as they are closed and contained in the
compact image of some ψm′ . Thus Hζ takes a minimum at some point m
on the closure of the integral curve generated by Xξ giving {Hξ,Hζ}(m) =
dmHξ(Xζm) = 0 implying

ω(Xξ, Xζ) = {Hξ,Hζ} = 0 (f)

everywhere in case all the objects in question exist. This result will be needed
later.

Finally we note that, given any smooth manifold Q and an action Φ by a
Lie group G on it, this action can be extended to a symplectic action on T ∗Q
as T ∗ lifts diffeomorphisms to symplectomorphisms. The extended action is
given by

G× T ∗Q −→ T ∗Q (g, (q, pq)) 7−→ (g.q, ϕ∗g−1pq).

 moment maps

Using many of the definitions we have made so far, we are now in a position
to define the notion of a moment map. This is a fairly technical and abstract
notion but perseverance will be rewarded in the next section with nice re-
sults. The moment map can be thought of as an attempt to generalise the
idea of a Hamiltonian function.

definition Let (M,ω) be a symplectic manifold and G a Lie group with
Lie algebra g acting on M symplectically. Then a map

µ : M −→ g∗

with µ̂ denoting the induced map

µ̂ : g −→ C∞(M) ξ 7−→ [m 7→ µ(m)(ξ)]

is called a moment map if for every ξ ∈ g the function µ̂(ξ) is Hamiltonian,
that is, if

dµ̂(ξ) = ιξω or equivalently Xµ̂(ξ) = Xξ.

facts As the µ̂(ξ) are Hamiltonian functions, those given by different µ
can differ by at most a constant (on each connected component). Thus, any
two moment maps differ only by a constant element of g∗ on each connected
component of M . Also, for moment maps to exist, the group action must be
weakly Hamiltonian.

Another result that we get is the following: Let µ be a moment map along
with all the setup required for it in the standard notation and a function
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H ∈ C∞(M) that is invariant under the group action, i.e. H is constant
along orbits of the group action. Then we have

µ(Ft(m)) = µ(m) for every m ∈M, t ∈ [0, 1]

where Ft is the flow associated to XH . A function H with this property is
called an integral for the vector field XH . To prove this, we pick the right
formulas from our work on Poisson brackets on page , use the fact that H
is constant along orbits of G as well as Xξ = (ιξω)] = (dµ̂(ξ))] = Xµ̂(ξ), to
get, for any ξ ∈ g,

0 = dH(Xξ) = dH(Xµ̂(ξ)) = {H, µ̂(ξ)} = dµ̂(ξ)(XH).

Ad and Ad∗ Let Ad be the adjoint representation of G on its Lie algebra
g coming from G acting on itself by conjugation

Ad : G −→ Aut(g) g 7−→
[
ξ 7→ (ρ−1

g λg)∗e
ξ
]
;

and let Ad∗ be its dual, the coadjoint representation on g∗

Ad∗ : G −→ Aut(g∗) g 7−→
[
τ 7→ (Adg−1)∗τ

]
.

Note, that Ad and Ad∗ are constant idg and idg∗ respectively if G is abelian
as then, for every g ∈ G, Adg = (ρ−1

g λg)∗e
= idg. We will later need the

following result on how the vector field associated to a vector ξ ∈ g is related
to that associated to Adgξ:

(XAdgξ)m =
d

dt
ϕexp tAdgξ(m)|t=0

=
d

dt
ϕg(exp tξ)g−1(m)|t=0

=
d

dt
ϕgϕexp tξ(g−1.m)|t=0

= ϕg∗

(
Xξg−1.m

)
Finally, let Φ be a symplectic action of G on M and µ be a moment map

for that group action. Then µ is said to be Ad∗-equivariant if the diagram
in figure  commutes.

M
ϕg

//

µ

��

M

µ

��

g∗
(Ad∗)g

// g∗

figure : µ is Ad∗-equivariant if this diagram commutes.
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To see that Ad∗-equivariance is an important property let µ be an Ad∗-
equivariant moment map, τ ∈ g and Gτ = {g ∈ G|(Ad∗)gτ = τ} the isotropy
subgroup of τ in G. Gτ is closed, thus a Lie group. We see that with g ∈ Gτ

and m ∈ µ−1(τ)

µ(g.m) = µ(ϕg(m)) = (Ad∗)gµ(m) = (Ad∗)gτ = τ. (g)

Thus Ad∗-equivariance ensures that Gτ acts on µ−1(τ). In the next para-
graph we will see an example for an Ad∗-equivariant moment map.

cotangent bundle Given a manifold Q with a group action Φ by G we
have seen that this extends to a symplectic group action Φ′ on T ∗Q. We can
now define

µ : T ∗Q −→ g∗ (q, p) 7−→
[
ξ 7→

(
ϑ(XT ∗Q

ξ

)
(q,p)

]
where ϑ is the canonical 1-form as defined on page . Since G acts by sym-
plectomorphisms on T ∗Q, ω and thus ϑ are constant along orbits, using
equation (c), we get

0 = LXξ
ϑ = d(ιXξ

ϑ) + ιXξ
dϑ = d(µ̂(ξ))− ιXξ

ω

so µ is a moment map. A computation using G-invariance of ϑ and a fair
amount of rewriting shows that µ is Ad∗-equivariant: for any m = (q, p) ∈
T ∗Q, g ∈ G and ξ ∈ g we have

((Ad∗)gµ(m)) (ξ) = µ(m)(Adg−1ξ)

=
(
ϑ(XT ∗Q

Adg−1ξ)
)

m
= ϑm

(
(ϕg−1∗)g.m(XT ∗Q

ξ )g.m

)
=

(
ϑ(XT ∗Q

ξ )
)

g.m
= µ(ϕg(m))(ξ).

A further computation using the naturality of X ·
ξ on the bundle projec-

tion π and its pushforward reveals a less abstract expression for this map:

µ(q, p)(ξ) = ϑ(XT ∗Q
ξ )(q,p) = p

(
dp(XT ∗Q

ξ )
)

(q,p)

= p
(
dπ(XT ∗Q

ξ )
)

(q,p)
= p

(
π∗X

T ∗Q
ξ

)
(q,p)

= p(XQ
ξ q).

examples and physics As the name ‘moment map’ suggests, the main
examples for moment maps come from physics – although of course physicists
have a more ‘hands-on’ approach to this and tend to use neither the abstract
definitions we have seen nor the name ‘moment map’ but more concrete
descriptions as ‘energy’ or ‘momentum’. We will recruit our examples from
those given in the paragraph on cotangent bundles in section refmanifolds.
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harmonic oscillator We start with the example of the harmonic oscil-
lator. Its phase space was seen to be R2 = T ∗R with coordinates q for the
‘location’ and p for the ‘momentum’ and symplectic form ω = dq ∧ dp. By
the isomorphism defined by q 7→ 1 and p 7→ i, we can identify the phase
space and similarly its tangent spaces with C and define a S1-action on it
by multiplication with eiα with α ∈ [0, 2π].

This is in fact a symplectic group action as rotations of the plane are
volume preserving and ω is a volume form. We now define a map

µ : M → R (q, p) 7→ 1/2(q2 + p2)

and identify s1∗ = (iR)∗ ' R. This map is the energy of the harmonic oscil-
lator and the group action is a change of coordinates from straightforward
position-and-momentum coordinates to mixed ones where each coordinate
carries partial information on both the position and the momentum.

To see that our map µ is a moment map first observe that the vector
fields associated to vectors iy ∈ s1 are

(Xiy)reiα =
d

dt
ϕexp tiy(reiα)|t=0

=
d

dt
rei(ty+α)

|t=0
= iryei(ty+α)

|t=0
= iryeiα

where (q, p) = reiα ∈ T ∗Q. With the proper identifications of the different
bases this gives

(Xiy)reiα = iryeiα = ry(i cosα− sinα) = y(−p ∂
∂q

+ q
∂

∂p
).

Eventually we see that

ιXiyω = ydq ∧ dp
(
−p ∂

∂q
+ q

∂

∂p

)
= y(qdq − pdp) =

y

2
d(q2 + p2) = d(µ̂(iy))(q, p),

proving that µ is a moment map. Since S1 is abelian, Adg = idg for every
g ∈ G and we see that µ is Ad∗-equivariant:

((Ad∗)eiαµ(reiβ))(iy) = µ(reiβ)(idgiy)

= yr2 = µ(rei(α+β))(iy) = µ(ϕeiα(reiβ))(iy)

momentum Next, we proceed to higher dimensions and consider R3 with
linear coordinates q and R3 acting on it by translations, i.e. for g ∈ R3 we
have ϕg(q) = q + g. As we know this action extends to a symplectic action
on T ∗R3 given by ϕ′g(q, p) = (q + g, ϕ∗−gp). By our general notes on the
cotangent bundle we can now compute an Ad∗-equivariant moment map

µ(q, p)(ξ) = p(XR3

ξ )q = p

(
d

dt
ϕexp tξ(q)|t=0

)
= p

(
d

dt
(q + tξ)|t=0

)
= p(ξ).
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M
µ

// g∗

µ−1(τ)

i
66lllllllll

π ((QQQQQQQQ

M//τG

figure : Maps involved in getting the symplectic quotient.

This example probably illustrates best how the moment map got its name.
Given the group action by translation which represents the idea that at
every point in space physics are the same we get a moment map that gives
us – the momentum.

The angular momentum arises in a similar fashion by the usual action
of SO(3) on R3. It is given by the moment map µ(q, p)(ξ) = q× p where we
think of q×p as a vector of so(3)∗ via the identification of so(3) with R3 and
duality induced by the standard inner product on R3. Actually computing
this is rather lengthy as it requires a good deal of care when working out
the vector fields Xξ for ξ ∈ so(3).

 symplectic reduction

So far we have seen quite a few definitions and facts with a hint of physics
in them. These preparations are about to bear fruit as they are the correct
setting for the process of symplectic reduction that enables us to go from one
symplectic manifold to another, lower-dimensional symplectic manifold. This
process has first been described by Marsden and Weinstein in [13], hence the
alternative name Marsden-Weinstein reduction. Their text already contains
most of the points that are covered in newer textbooks treating this topic,
including the examples given here.

definition / theorem Our setting is the following: Let (M,ω) be a sym-
plectic manifold, G a Lie group acting on it, µ an Ad∗-equivariant moment
map for this group action and τ a regular value of µ. Then the preimage
µ−1(τ) is a submanifold with the isotropy subgroup Gτ of G acting on it as
shown in equation (g). Assuming that this action is free and properly dis-
continuous, the quotient µ−1(τ)/Gτ is also a manifold. This is often denoted
M//τG and called the Marsden-Weinstein quotient or symplectic quotient.

We will now prove the main fact about this manifold, namely that it is
a symplectic manifold with a symplectic structure ω′ given by π∗ω′ = i∗ω
with the maps as illustrated in figure , i.e.

ω′[m]([v], [w]) = ωm(v, w) for m ∈ µ−1(τ), v, w ∈ Tmµ
−1(τ).
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where we note that, using the definition of a moment map, for all ξ ∈ g

Tmµ
−1(τ) = ker dmµ = ker dmµ̂(ξ) = kerωm(Xξ, ·) = Tm(G.m)ω,

giving that the tangent space at any [m] ∈M//τG is

T[m]M//τG = Tmµ
−1(τ)/Tm(G.m) = Tmµ

−1(τ)/(Tmµ
−1(τ))ω. (h)

With two different kinds of equivalence classes involved in the definition
of ω′, we have to check for well-definedness. With the previous result it is
immediate that for v, w ∈ Tmµ

−1(τ) and u ∈ Tm(Gτ .m) ⊂ Tm(G.m) we have
ωm(v, u) = 0 and thus ωm(v, w + u) = ωm(v, w). A similar computation to
that in equation (g) shows that ωg.m(v, w) = ωm(v, w) for g ∈ Gτ .

Next, suppose that ω′[m]([v], [w]) = ωm(v, w) = 0 for all v ∈ Tmµ
−1(τ).

Then w ∈ (Tmµ
−1(τ))ω = Tm(G.m) and thus [w] = 0, showing that ω′

is non-degenerate. Finally, we can see by the properties of the quotient
projection and inclusion maps that dπ∗ω′ = di∗ω = i∗dω = 0 implying
π∗dω′ = 0 and, as π is a submersion, dω′ = 0, completing the proof that ω′

is a symplectic structure on M//τG.
Now that we have seen that everything is well-defined, the last part of

equation (h) implies that µ−1(τ) is a coisotropic submanifold, i.e. a sub-
manifold all tangent spaces of which are coisotropic in the tangent spaces of
the surrounding manifold. In [14, §5.3] the symplectic quotient is introduced
using the setting of coisotropic submanifolds.

harmonic oscillator and complex projective space As promised
before we will use the technique of symplectic reduction to show that CPn is
a symplectic manifold in an unusual way. To do this, consider Cn+1\{0} as
a symplectic manifold with the standard symplectic structure for Cn+1. Let
S1 act on it by scalar multiplication with eiα. This setting can be thought of
as a system of (n+1) harmonic oscillators. Thus their total energy function
µ : (z0, . . . , zn) 7→ 1/2

∑n
j=0 |zj |2 is an Ad∗-equivariant moment map.

As 0 is not in our original manifold, every τ ∈ R ' s1∗ is a regular value
and its preimage is a (2n + 1)-sphere of radius

√
2τ in Cn+1. Since S1 is

abelian, the isotropy subgroup S1
τ is all of S1. Going the last step of the

reduction process, we arrive at Cn+1//τS
1 =

√
τS2n+1/S1. Thus CPn is a

symplectic manifold.
It turns out that for τ = 1/2 the symplectic structure we get in this

way is the same as the symplectic structure induced by the Fubini-Study
metric which is derived, for example, in [11, Example IX.6.2]. Note, that
the symplectic structure we get from the reduction process depends on the
choice of τ .

For n = 0, this is just the example of the single harmonic oscillator we
have seen before. Exploiting the moment map and the S1-symmetry, we are
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able to reduce the complex plane to a single point. This tells us that once
we know the energy of a harmonic oscillator, its future behaviour can be
determined from an initial ‘position’.

more examples Similarly to the harmonic oscillator we can treat the
momentum: Every value of the moment map µ(q, p) = p is regular and
µ−1(τ) = R3 × {τ}. As the isotropy subgroup is all of R3 and the action
by translation on the configuration space is free and properly transitive, we
can proceed and this space is reduced to a point as well – telling us that
once we know the position and momentum of a moving object in space, we
can determine its future behaviour.

We shall not work out the reduction induced by the angular momentum
here as it is by far more complicated than the previous examples: finding
preimages for µ(q, p) = q×p and describing them precisely is far from being
obvious and then finding the isotropy subgroup requires extra attention as
well since SO(3) is not abelian. The preimages for regular values τ 6= 0 will
be 3-dimensional as we can choose q out of a plane and then have ‘half a
circle”s worth of choices for p. The isotropy subgroups are copies of S1 in
SO(3). Unlike the previous examples we do not reduce by once the dimension
of the group when taking the preimage and once again the dimension of the
group when dividing by all of it, but the dimensions are split differently in
the process, still adding up to twice the dimension of the group.

In [13, §6] there are more examples for symplectic reduction, the last of
which outlines how it can also be used in general relativity.

physics After having seen these physical examples it is a good point to re-
mark that the process of symplectic reduction is a geometric way to think of
the finding of ‘symmetries’ and ‘invariants’ in physics and the elimination of
variables based on those symmetries. Furthermore the process of symplectic
reduction gives a formal geometric backing for what the physicists do.

More precisely, physicists tend to consider systems described by a La-
grangian function L(q, q̇, t) where q̇ denotes the derivative of q with respect
to t and are interested in those paths q between two given points q(0) and
q(1) in space that minimise the integral

∫ 1
0 L(q(t), q̇(t), t)dt. A computation

as done in [14, Lemma 1.1] shows that such paths satisfy the Euler-Lagrange
equations

d

dt

∂L

∂q̇j
=
∂L

∂qj
for 1 ≤ j ≤ n.

Instead of using this system of n second order differential equations, we
introduce new variables

pj =
∂L

∂q̇j
for 1 ≤ j ≤ n.
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With these we define the Hamiltonian function H(q, p, t) =
∑n

j=1 pj q̇j −
L(q, q̇, t). This kind of Hamiltonian function is the origin for the name of
Hamiltonian functions in section . Differentiating H and using the Euler-
Lagrange equations as well as the definition of the pj , we get

∂H

∂qj
= − ∂L

∂qj
= −ṗj and

∂H

∂pj
= q̇j for 1 ≤ j ≤ n.

These are known as the Hamilton equations and they constitute a system of
2n ordinary differential equations.

The process of going from the q̇j to the pj is called Legendre transfor-
mation and from a formal point of view it takes us from the velocity phase
space TQ to the momentum phase space T ∗Q. This is where the symplectic
structure is hiding. We also note that the fact that symplectic reduction
reduces by an even number of dimensions fits in well as we cannot simply
remove a dimension in some qj without removing the corresponding pj .

outlook The process of symplectic reduction as it is described here has
been generalised for similar constructions on Kähler or hyperkähler (three
compatible complex and symplectic structures) manifolds. In each case there
are stronger restrictions on the group action which has to preserve all of the
structures. In the hyperkähler case, moment maps for all three symplectic
structures are used and the reduction reduces by more (twice as many)
dimensions. A brief account of these types of reduction along with further
references is given in [17].

 special lagrangian submanifolds

lagrangian subspaces Recall that in section  we defined the notion
of a Lagrangian subspace W of a 2n-dimensional symplectic vector space
(V, ω) by the condition Wω = W . This is equivalent to saying that W is
n-dimensional and ω|W = 0.

A more intuitive way to think about this is given by Harvey and Lawson
in [9, §III.1] – but it requires a slightly less general setting: Consider the space
Cn with its normal complex structure J , real inner product g, hermitian
inner productH as well as the standard symplectic form ω. Then we consider
subspaces W with dimRW = n. These are called totally real if they do not
contain any complex lines, i.e. if v ∈ W ⇒ Jv 6∈ W or if dimC(spanCW ) =
n.

We may want W to be even ‘less complex’ by imposing the condition
that for v ∈ W we have g(Jv,w) = 0 for all w ∈ W , thus requiring W
to be ‘orthogonal’ to the complex structure. A short computation involving
equation (a),

0 = g(Jv, ·)|W = ω(Jv, J ·)|W = ω(v, ·)|W ,
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reveals that this condition is actually the condition for a Lagrangian sub-
space and hence allows us to think of Lagrangian subspaces as very ‘non-
complex’ subspaces. We will denote the set of oriented Lagrangian subspaces
by Lag(n). Given W ∈ Lag(n) and U ∈ U(n), we have

ω(U(W ), U(W )) = Im H(U(W ), U(W )) = Im H(W,W ) = ω(W,W ) = 0

and thus U(n) acts on Lag(n). Let b be an orthonormal basis for W . Then,
W being Lagrangian implies that b∪Jb is an orthonormal basis for Cn and
equally that b is in fact a unitary basis for Cn. As U(n) acts transitively
on the set of unitary bases for Cn, it also acts transitively on Lag(n). Since
we required the elements of Lag(n) to be oriented, the isotropy subgroup of
this action at Rn × 0 is

U(n)Rn×0 = {U ∈ U(n)|U(Rn × 0) = Rn × 0} = SO(n)

where we think of SO(n) as a subgroup of U(n) by letting it act diagonally
on Rn ×Rn. Hence

Lag(n) ' U(n)/SO(n) (i)

In this setting, given an element U ∈ U(n), it represents the Lagrangian
subspace W = U(Rn × 0) with the orientation induced by the standard
orientation on Rn.

special lagrangian subspaces Now we can define the set of special
Lagrangian subspaces to be

SLag(n) = det−1
C (1) ∩ Lag(n) ' SU(n)/SO(n),

where the first part is well-defined since detC is invariant under the SO(n)-
action described in the previous paragraph and the latter part arises by a
similar argument to that leading to equation (i).

As detC(Lag(n)) = S1 ⊂ C, Im(detCW ) is zero if and only if detCW =
±1. Identifying both copies of each subspace W with opposite orientations,
we get W ∈ SLag(n) if and only if Im(detCW ) = 0 for some orientation of
W .

We can slightly generalise the notion of a special Lagrangian subspace to
a special Lagrangian subspace with phase eiα which has determinant ±eiα
instead of ±1. It is noted in [9, §III.1] that the geometries arising from
phased subspaces are equivalent to those with phase 0 under U(n) – thus
this generalisation does not do any harm and we shall omit the eiα in the
notation. Using this generalisation we have that any given complex volume
form is of the form Ω = eiα detC and will thus use Im Ω = 0 as the condition
for a Lagrangian subspace to be special Lagrangian with respect to (the
phase of) Ω. This terminology is in line with that used in [7] and [5].
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manifolds We now transfer the notion of Lagrangian and special La-
grangian subspaces to submanifolds by saying that a submanifold is (special)
Lagrangian if all of its tangent spaces are (special) Lagrangian subspaces of
the tangent spaces of the ambient manifold. More concretely – a submanifold
N of a symplectic manifold (M,ω) is Lagrangian if

ω|N = 0

and it is special Lagrangian if, with a holomorphic volume form Ω, we have

ω|N = 0 and Im Ω|N = 0. (j)

calabi-yau manifolds Before proceeding, we consolidate all the different
structures we use into a single notion. Let (M,ω) be Kähler manifold and
Ω a holomorphic volume form. Then (M,ω,Ω) is called an almost Calabi-
Yau manifold. In this setting the notion of a special Lagrangian submanifold
in the sense of equation (j) is still meaningful. If ωn/n! = cΩ ∧ Ω̄ with a
constant c, we call (M,ω,Ω) a Calabi-Yau manifold.

calibrations Harvey and Lawson’s text [9] is concerned with calibrated
geometries. A calibration is a closed k-form η such that η|W ≤ volM for any
k-dimensional subspace W of one of the tangent spaces. We will be dealing
with , Riemannian manifolds M with a calibration η. A k-dimensional sub-
manifold N ⊂ M with η|N = volN is called a calibrated submanifold and it
is of minimal volume in its homology class. For compact calibrated N and
another N ′ from the same homology class this is proved by

Vol(N) =
∫

N
volN =

∫
N
η =

∫
N ′
η ≤

∫
N ′

volN ′ = Vol(N ′).

Given a Calabi-Yau manifold (M,ω,Ω), Re Ω is a calibration and thus spe-
cial Lagrangian submanifolds N ⊂ M are volume minimising in their ho-
mology class. It is noted in [9, §III.2.D] that to a certain the converse is true
as well.

examples Given a closed 1-form η on Rn, its graph Γη = {(q, ηq)|q ∈
Rn} in the cotangent bundle T ∗Rn ' Cn is a Lagrangian submanifold as
ω|Γη

= dq ∧ dp|Γη
= dq ∧ dη|Γη

= 0. By [9, Theorem 2.3] Γη is special
Lagrangian if locally at Γη there exists a function F such that η = dF and
Im[detC(id + iHess F )] = 0.

Before proceeding to the next example recall the definition of the Poisson
bracket in equation (d) as {F,G} = ω(XF , XG): a regular submanifold N =
{m ∈ Cn|F1(m) = . . . Fl(m) = 0} ⊂ Cn of codimension l is Lagrangian if
{Fj , Fk}|N = 0 for 1 ≤ j, k ≤ l†.

†This is the same condition as that for the Hamiltonian system associated to the Fj to
be integrable.
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Equation (e) gives an expression for the Poisson bracket with respect to
∂/∂xj and ∂/∂xj coming from the standard symplectic charts which we can
transfer into an expression using ∂/∂z and ∂/∂z̄:

{F,G} =
n∑

j=1

(
∂F

∂xj

∂G

∂yj
− ∂F

∂yj

∂G

∂xj

)

=
n∑

j=1

(
∂F

∂z̄j

∂G

∂yj
+
∂F

∂zj

∂G

∂yj
+ i

∂F

∂z̄j

∂G

∂xj
− i

∂F

∂zj

∂G

∂xj

)

= i
n∑

j=1

(
−∂F
∂z̄j

∂G

∂z̄j
+
∂F

∂z̄j

∂G

∂zj
− ∂F

∂zj

∂G

∂z̄j
+
∂F

∂zj

∂G

∂zj

+
∂F

∂z̄j

∂G

∂z̄j
+
∂F

∂z̄j

∂G

∂zj
− ∂F

∂zj

∂G

∂z̄j
− ∂F

∂zj

∂G

∂zj

)

= 2i
n∑

j=1

(
∂F

∂z̄j

∂G

∂zj
− ∂F

∂zj

∂G

∂z̄j

)

Using this computation, we can look into another example which is adapted
from [9, §III.3.A]: consider the map

f : Cn → Rn (z1, . . . zn) 7→ (|zn|2−|z1|2, . . . , |zn|2−|zn−1|2,Re[inz1 . . . zn])

which is regular everywhere away from 0 ∈ Cn. Now consider preimages of
non-zero vectors v ∈ Rn. These f−1(v) are submanifolds which are defined
by equations f ′1 = . . . = f ′n = 0 where f ′j = fj − vj . Their partial derivatives
are:

∂f ′j/∂zk ∂f ′j/∂z̄k

j < n, k < n −δjkz̄j −δjkzj
j < n, k = n z̄n zn

j = n, k ≤ n inz1 . . . ẑk . . . zn inz̄1 . . . ̂̄zk . . . z̄n
Using all of these we get

{fj , fk} =



2i
∑n

l=1 δjlδkl(zj z̄k − z̄jzk)
= 2iδjk(zj z̄k − z̄jzk) = 0 j, k < n

2i
∑n

l=1 δjl(zji
nz1 . . . ẑj . . . zn

−z̄jinz̄1 . . . ̂̄zj . . . z̄n) = 0 j < n, k = n

0 by antisymmetry j = n,

proving that N is a Lagrangian submanifold. It is remarked in [9, §III.2.C]
that in the general setting of a submanifold implicitly defined by equations
Fj we can consider the complex linear map L mapping the standard basis
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for Cn to the basis {i∂F1/∂z̄, . . . , i∂Fn/∂z̄} of the tangent space of N .It
allows us to determine whether N is special Lagrangian or not by checking
whether or not Im[detC L] = 0. Applying this to our example gives

detC
(
i
∂fj

∂z̄k

)
jk

= in detC


−z1 zn

. . .
...

−zn−1 zn

in ̂̄z1 . . . z̄n · · · inz̄1 . . . ̂̄zn


= (−1)n

n∑
j=1

±z̄1 . . . ̂̄zj . . . z̄n z1 . . . ẑj . . . zm
= (−1)n

n∑
j=1

± |z1 . . . ẑj . . . zn|2 ∈ R,

proving that the submanifold N is special Lagrangian. We will work a bit
more with this example after the next paragraph. More examples are given
in [9, §III.3] and in [10, §8].

facts The following constructions are from [5] and [7], going mainly along
the more elegant presentation of the latter. They show that the notions
of special Lagrangian submanifolds and symplectic reduction are as ‘com-
patible’ as we could hope for: Given the setup for symplectic reduction of
an alomost Calabi-Yau manifold (M,ω,Ω), Ω will induce a form Ω′ on the
reduced space; special Lagrangian submanifolds of which with respect to
Ω′ can be lifted to special Lagrangian submanifolds in M and in fact, any
T l-invariant special Lagrangian submanifold of M does arise in this way.

Let (M,ω,Ω) be an almost Calabi-Yau manifold with a T l-action pre-
serving both forms, let µ be a moment map for that action, τ ∈ tl a regular
value of µ and ξ1, . . . ξl be a basis for the Lie algebra tl.

The first thing to see is that Ω induces a nowhere-vanishing n − l-form
on reduced spaces M//τG defined by π∗Ω′ = ιXξ1

...Xξl
Ω. To prove it, recall

from equation (h) that T[m](M//τT
l) = Tmµ

−1(τ)/Tm(T l.m) which implies
that

ιXξ1
...Xξl

Ω|Tm(T l.m) = 0

for every m ∈ µ−1(τ). As Ω is T l-invariant, so is Ω′ and thus we have that Ω′

is a well defined (n−l)-form on M//τG. The non-degeneracy and is inherited
from Ω by the construction.

Secondly, we can establish that special Lagrangian submanifolds N ′ of
(M//τT

l, ω′,Ω′) lift to special Lagrangian submanifolds N = i(π−1(N ′)) ⊂
M with the maps i and π as in figure : Let b be a basis for T[m]M//τT

l,
then

π−1(b) ∪ {Xξ1 , . . . , Xξl
} = {v1, . . . , vn−l, Xξ1m, . . . , Xξlm}
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is a basis for TmM . Now,

ωm(Xξj m
, Xξkm) = 0 by equation (f) as T l is compact and abelian,

ωm(vj , vk) = ω′[m]([vj ], [vk]) = 0 as N ′ is Lagrangian and

ωm(Xξj m
, vk) = 0 as Xξj m

∈ Tm(T l.m) = (Tmµ
−1(τ))ω and also

Im Ω(Xξ1 , . . . , Xξl
, v1, . . . , vn−l) = Im Ω′(v1, . . . , vn−l) = 0.

Thus N is special Lagrangian.
Finally we prove a partial converse of the previous statement. Given a

connected T l-invariant Lagrangian submanifoldN ⊂M consisting of regular
points of µ on which T l acts freely, then N lies in a level set of µ: As N is
l-dimensional and T l-invariant, its tangent spaces are spanned by the Xξj

.
Now, as N is Lagrangian and µ is a moment map, we have

0 = ω(Xξj
, ·)|N = dµ̂(ξj)|N

which implies that µ is constant on N, proving the claim. This argument can
be extended to an open neighbourhood of N , showing that any T l-invariant
Lagrangian submanifold is a lift of a Lagrangian submanifold N ′ ⊂M//τT

l.

example for a special lagrangian fibration We return to the exam-
ple with the map f that we have defined on page  but take the viewpoint
of [7] which is more general than the computation we have done before. Con-
sider the vector fields ∂/∂αj = 2i(z̄j∂/∂z̄j−zj∂/∂zj) inducing the standard
Tn-action on Cn. Then the vector fields Xj = ∂/∂αn − ∂/∂αj generate a
Tn−1 action on Cn. The standard symplectic form ω = dx∧dy = i/2dz∧dz̄
and the standard volume form Ω = dz1 ∧ . . . ∧ dzn are preserved by this
action as the action is in U(n).

We can define the map µ = (f1, . . . , fn−1) : Cn 7→ Rn−1 ' tn−1∗. And
we see that µ is a moment map:

dµj = zndz̄n − zjdz̄j + z̄ndzn − z̄jdzj

=
i

2
2i(−zndz̄n + zjdz̄j − z̄ndzn + z̄jdzj)

=
i

2
dz ∧ dz̄

(
∂

∂αn
− ∂

∂αj

)
= ιXjω

As all of the fj are invariant under the group action and Tn−1 is abelian,
µ is Ad∗-equivariant. Recall now that {fn, fj} = 0 for 1 ≤ j ≤ n. Thus fn

descends to a map f̄n on reduced spaces M//τT
n−1 and preimages f̄−1

n (v)
for regular values v are Lagrangian submanifolds. The form induced by Ω
on the reduced manifold is
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Ω′ = ιX1...Xn−1Ω

= dz1 ∧ . . . ∧ dzn
[
2i
(
z̄n

∂

∂z̄n
− zn

∂

∂zn
− z̄1

∂

∂z̄1
+ z1

∂

∂z1

)
,

. . . , 2i
(
z̄n

∂

∂z̄n
− zn

∂

∂zn
− z̄n−1

∂

∂z̄n−1
+ zn−1

∂

∂zn−1

)]
= (2i)n−1dz1 ∧ . . . ∧ dzn

[
z1

∂

∂z1
− zn

∂

∂zn
, . . . , zn−1

∂

∂zn−1
− zn

∂

∂zn

]
= c

n∑
j=1

z1 . . . ẑj . . . zndzj for some constant c.

However, we know that for some regular value v of f̄n and [m] ∈ f̄−1
n (v),

d[m]f̄n(T[m]f̄
−1(v)) = 0. As we have seen that

dfn =
n∑

j=1

(inz1 . . . ẑj . . . zndzj + inz̄1 . . . ̂̄zj . . . z̄ndz̄j)
this implies that

Ω′
|T[m]f̄

−1
n (v)

= 0,

proving that the fibres of f̄n are special Lagrangian. Using the facts from
above, we know that these fibres lift to special Lagrangian submanifolds in
level sets of µ in M and thus f = (µ, fn) is a special Lagrangian fibration.

end Now we have reached the topic of special Lagrangian fibrations and we
have seen an example as promised. This topic reaches into the area of mirror
symmetry and string theory as mentioned in the introduction. A rather non-
rigourous but very readable account of the physics in string theory and its
relation to Calabi-Yau manifolds and mirror symmetry is given in [6].
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