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abstract

This will give a brief introduction to spin structures on vector bundles
to pave the way for the definition and introduction of Dirac operators.
The presentation is mainly a brief summary of that given in [1].

 principal G-bundles

definition Let M be a manifold, π : P → M be a bundle over M and
G be a Lie group. If there is a right action of G on P preserving fibres and
acting freely on each fibre, π : P → M is called a principal G-bundle. In
particular, a principal G-bundle is locally of the form U ×G → U .
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equivalence Given two principal G-bundles π : P → M and π′ : P ′ →
M over the same base space M , we say that these
bundles are called equivalent if there exists a diffeo-
morphism ϕ : P → P ′ such that π = π′ϕ (a bundle
isomorphism) that is compatible with the group ac-
tion, i.e. ϕ(x.g) = ϕ(x).g for all x ∈ M and g ∈ G.
This gives an equivalence relation on the set of principal G-bundles over M
and the set of equivalence classes will be denoted PrinG(M).

example: covering spaces Let π : M̃ → M be a normal covering space,
i.e. the group G(M) of deck transformations acts transitively on each π−1(x).
This is a principal G(M)-bundle where G(M) is equipped with the discrete
topology.

In particular, if π : M̃ → M is a 2-sheeted covering, we have a G(M) =
Z2-action on M̃ by the interchanging of sheets. We get that PrinZ2(M) '
Cov2(M). Similarly the universal covering of S1, π : R → S1, is a principal
Z-bundle.
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example: hopf fibration A more exciting example is given by the Hopf
fibration π : S2n+1 → CPn with fibre S1: it is a principal S1-bundle.

example: bundles of bases For a different kind of example, consider
π : E → M , a n-dimensional real vector bundle. Then the bundle of bases is
defined to have as fibre at x the set of all bases for the fibre Ex of the vector
bundle. This bundle is denoted PGL(E) and it is a principal GLn-bundle.

Similarly we can define the bundle POn(E) of orthonormal bases for E
which is a principal On-bundle. Finally, for oriented E, we can define the
bundle PSOn(E) of oriented orthonormal bases for E which is a principal
SOn-bundle.

aside: čech-cohomology A knowledge of Čech-cohomology helps when
looking at the equivalence classes of principal G-bundles. This is due to the
fact that the compatibility condition for the change of local trivialisation
on bundles and the coboundary condition in Čech-cohomology are related.
Working through the technical details gives the useful relation PrinG(M) '
Ȟ1(M,G) where G denotes the sheaf of G-valued germs.

A deduction of this particular relation can be found in [1, p. 371f] and
a comprehensive treatment of Čech-cohomology can usually be found in
textbooks on topics dealing with sheaves, e.g. algebraic geometry.

 orientability

Given a riemannian manifold M and π : E → M , a n-dimensional real
vector bundle, we can try to find out whether this vector bundle admits an
orientation on each fibre Ex that is continuously varying with x.

To formalise this problem, we consider the bundle of orthonormal bases
POn(E) as in the example above. Now form the quotient Or(E) = POn(E)/SOn,
where two elements of POn(E)x are identified if they are related by an ele-
ment of SOn, i.e. if they have the same orientation. Thus the fibre at x of
Or(E) consists of the orientations of Ex and consequently Or(E) is called
the bundle of orientations in E.

Or(E) is a 2-sheeted covering space of M . E is orientable if and only
if Or(E) is a trivial bundle as only this ensures that there are two distinct
continuously varying orientations on each connected component. Thus, if E
is orientable, there is a one-to-one correspondence between orientations and
elements of H0(M,Z2).

example As an easy example, compare a Möbius strip M and a cylinder
C, both of which can be thought of as one-dimensional real vector bundles
over S1. While Or(C) ' S1×Z2, i.e. a trivial bundle, Or(M) is the non-trivial
double-covering of S1.
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isomorphism We can see that Cov2(M) ' Hom(π1(M),Z2) as there is a
one-to-one correspondence between 2-sheeted coverings of M and index-2-
subgroups of π1(M). As we are looking at homomorphisms to Z2, we can
exchange π1(M) by its abelianisation H1(M), and using Poincaré duality
we get Hom(π1(M),Z2) ' Hom(H1(M),Z2) ' H1(M,Z2). Thus, we have
established an isomorphism

Cov2(M) ' H1(M,Z2).

This isomorphism natural and it is the same as the one presented in the
paragraph on Čech-cohomology above.

first stiefel-whitney class As every vector bundle E as above gives
an element Or(E) of Cov2(M), it also gives an element w1(E) in H1(M,Z2)
via the isomorphism we just established. w1(E) is called the first Stiefel-
Whitney class of E and E is orientable if and only if w1(E) = 0. We can
think of w1(E) as the obstruction to the orientability of E.

motivation Another way to think about choosing an orientation for an
orientable vector bundle E is that it is equivalent to choosing a principal
SOn bundle PSOn(E) ⊂ POn(E) for E. In particular this means, we are able
to make the structure group for E connected for orientable E. This may
motivate the next step in which we try to make the structure group not
only connected but also simply connected.

 spin structures

definition For n ≥ 3, a spin structure on an oriented n-dimensional real
vector bundle π : E → M is a principal Spinn-bundle PSpinn

(E) with a
2-sheeted covering ξ : PSpinn

(E) → PSOn(E) that is compatible with the
Spinn-action, i.e. ξ(x.g) = ξ(x).ξ0(g), where ξ0 is the universal cover of SOn.
This definition is best summarised by the diagram:
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Re-phrasing the above definition, we get that there is a one-to-one corre-
spondence between spin structures on E and 2-sheeted coverings of PSOn(E)
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that are non-trivial on fibres. By the isomorphism of the previous section,
they are also in one-to-one correspondence with elements of H1(PSOn(E),Z2)
that restrict to non-zero elements on fibres of PSOn(E).

second stiefel-whitney class and further results With further
work the second Stiefel-Whitney class w2(E) can be defined. This requires a
closer look at the cohomology. One way to do this, is to recall that an oriented
vector bundle gives us a principal SOn-bundle on M and use the isomorphism
PrinSOn(M) ' H1(M,SOn) to consider E as an element of H1(M,SOn).
Now, the second Stiefel-Whitney class can be defined as the coboundary
map w2 : H1(M,SOn) → H2(M,Z2) that is induced (in a non-obvious way,
see [1, p. 373]) by the short exact sequence 0 → Z2 → Spinn → SOn → 0.

We then get results corresponding to those for w1: A spin structure exists
on E if and only if w2(E) = 0 and if w2(E) = 0, then the spin-structures on
E are in one-to-one correspondence with H1(M,Z2). It can also be shown,
that once we choose a spin structure on E for a given riemannian metric
on E, this determines spin structures with respect to all other riemannian
metrics on E.

spin manifolds An oriented riemannian manifold with a spin structure on
its tangent bundle is called a spin manifold. As an example, we can consider
the manifold SOn of dimension N = n(n−1)

2 . We know that H1(SOn) '
π1(SOn) ' Z2 and thus H1(SOn,Z2) ' Hom(H1(SOn),Z2) ' Z2. Hence
there are two distinct spin structures on SOn. As SOn is a Lie group, it
is parallelisable, and thus PSON

(SOn) = SOn × SON . The two 2-covers of
PSON

(SOn) are then given by˜PSON
(SOn) = SOn × SpinN and ̂PSON

(SOn) = (Spinn × SpinN )/Z2

where Z2 identifies (p, q) and (−p,−q) in Spinn × SpinN .

 clifford bundles

the associated bundle Let M , F be manifolds, G a Lie group, π :
P → M a principal G-bundle and % : G → Homeo(F ) a continuous group
homomorphism. Then % allows us to define a free left action of G on P × F
by

g.(p, f) =
(
p.g−1, %(g)(f)

)
which we use to define the quotient P ×% F = (P × F )/ ∼ where (p, f) ∼
(p′, f ′) if and only if (p, f) = g.(p′, f ′) for some g ∈ G. The map P × F

p1→
P

π→ M descends to the quotient as πp1(g.(p, f)) = πp1(p.g−1, %(g)(f)) =
π(p.g−1) = π(p) as fibres are invariant under the action of G, making P×%F
into a fibre bundle with fibre F over M . P×%F is called the bundle associated
to P by %.
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representation of SOn Recall the standard representation of SOn on
Rn:

%n : SOn −→ Aut(Rn) o 7−→ (%o
n : v 7→ o(v))

Using functoriality of Cl as shown in [4, §4], this induces a representation
of SOn on Cln:

cl(%n) : SOn −→ Aut(Cln) o 7−→ (cl(%n)o : x 7→ õ(x))

definition Using the objects of the previous paragraphs we can now de-
fine the Clifford bundle for an oriented n-dimensional riemannian vector
bundle E:

Cl(E) = PSOn(E)×cl(%n) Cln

Note that the fibres of Cl(E) are Cl(E)x = Cl(Ex, qx) where qx is the
riemannian metric at x.

By virtue of the naturality of most of the properties of Clifford algebras,
such as the grading, these properties exist similarly for Clifford bundles.

 outlook

The next step will be to define and discuss spinor bundles using Clifford
modules and the Dirac operator as it is done in [3] and [1, II].

It seems that the subject of spin structures can be approached from
many different angles. Some authors prefer to emphasise the representation
theory [2], while others prefer to focus on cohomology. It seems that further
study of characteristic classes will be helpful; [5] was recommended for this
purpose in general and [6] was recommended for Seiberg-Witten theory.
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